

Estadísticas de Cuentas Nacionales Trimestrales

Proyecciones mecánicas

3 al 13 de agosto 2009

PROYECCIONES MECÁNICAS

- Proyecciones de las tendencias basadas únicamente en los datos anuales.
 - Construir datos "sintéticos".
 - Sólo se utilizarán en el caso de rubros menores.
 - Método para llenar vacíos cuando no existe una solución más adecuada.
 - Incluye pronósticos para el año corriente.

PROYECCIONES MECÁNICAS

- Proyección de tendencias basada en datos trimestrales o mensuales:
 - Para ampliar las series de indicadores que no aparecen con suficiente puntualidad.
 - Incluye pronósticos de los trimestres o meses sobre los que no se dispone de ningún dato.
 - Incluye estimaciones basadas en dos de los tres meses del trimestre.
 - De ser posible, es preferible actualizar las series de indicadores mediante la extrapolación con series relacionadas.
 - Los vacíos siempre deberán llenarse explícitamente y no implícitamente.
 - Cero también es una estimación, pero suele ser la peor.

Proyecciones de las tendencias basadas en datos anuales

- Procedimiento de dos etapas:
 - Proyectar para el año corriente (y en algunos métodos, para el año sucesivo).
 - Distribuir trimestralmente la serie temporal de datos anuales.
- Objetivo:
 - Obtener series lo más suavizadas posible, o
 - una serie suavizada con un perfil estacional superimpuesto conocido a priori.
 - El método debe ser simple y sólido.
- Resultado:
 - Datos puramente sintéticos. S

<u>Fórmula de interpolación o distribución trimestral de Lisman y Sandee (1964), métodos similares Stram and Wei (1986, 1990) and Al-Osh (1989)</u>

Aceptable, pero no recomendada.

- i) Formular un pronóstico de los datos anuales correspondientes al **año** corriente $(A_{\beta+1})$ y para el **año siguiente** $(A_{\beta+2})$.
- ii) Distribuir trimestralmente los datos anuales utilizando la siguiente fórmula de desagregación:

Restricciones: cuando los datos anuales de tres años consecutivos y-1, y, y+1 no se encuentran alineados en línea recta se suponen alineados en una curva sinosoidal

$$X_{1, y} = (0, 291 \ A_{y-1} + 0, 793 \ A_{y} 0, 084 \ A_{y+1}) / 4$$

$$X_{2, y} = (0, 041 \ A_{y-1} + 1, 207 \ A_{y} 0, 166 \ A_{y+1}) / 4$$

$$X_{3, y} = (0, 166 \ A_{y-1} + 1, 207 \ A_{y} 0, 041 \ A_{y+1}) / 4$$

$$X_{4, y} = (0, 084 \ A_{y-1} + 0, 793 \ A_{y} 0, 291 \ A_{y+1}) / 4$$

siendo

 $X_{q,y}$ la estimación trimestral derivada correspondiente al trimestre q en el año y; y la estimación correspondiente al año y.

Interpolación por mínimos cuadrados: Boot, Feibes y Lisman (1967)

- i) Formular un pronóstico de los datos anuales correspondientes al año corriente $(A_{\beta+1})$.
- ii) Distribuir trimestralmente los datos anuales utilizando la técnica de minimización por mínimos cuadrados:
- Sin ningún perfil estacional superimpuesto.

$$(x_{1}, \dots, x_{4}, y) \sum_{t=1}^{MIN} [x_{t} - x_{t-1}]^{2},$$

$$t \in \{1, \dots, (4 \beta^{+1})\}, y = \{1, \dots, \beta^{+1}\}^{t}) \quad t = 1$$

Sujeto a la restricción de que la suma de los datos trimestralizados debe ser equivalente a los datos anuales observados): ß=año con último dato anual, t= q, y

$$\sum_{t=4}^{4} \sum_{y=-3}^{y} X \qquad \qquad t = A \qquad \qquad y$$

Con un perfil estacional superimpuesto: Cholette (1988)

$$(x_1, \dots, x_4) \sum_{t=2}^{4y} \left[\frac{x_t}{SF_t} - \frac{x_{t-1}}{SF_{t-1}} \right]^2,$$

 $t \in \{1,...(4\beta+1)\}, y = \{1,....\beta+1\})$, siendo:

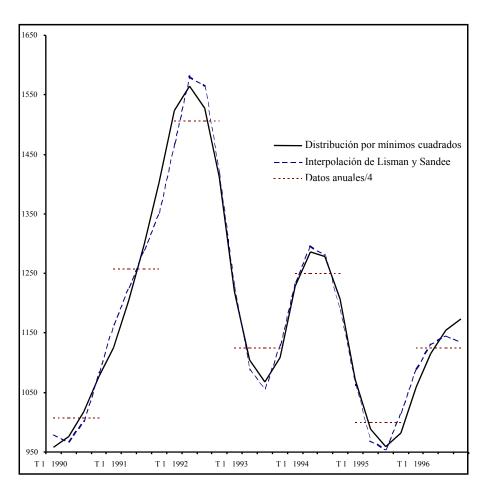
t un símbolo genérico del tiempo (t = q,y).

t=4y-3 es igual al primer trimestre del año y.

4y es el cuarto trimestre del año y.

la estimación trimestral derivada correspondiente al trimestre t;

 A_y la estimación anual correspondiente al año y; el último año del que se dispone de alguna ob

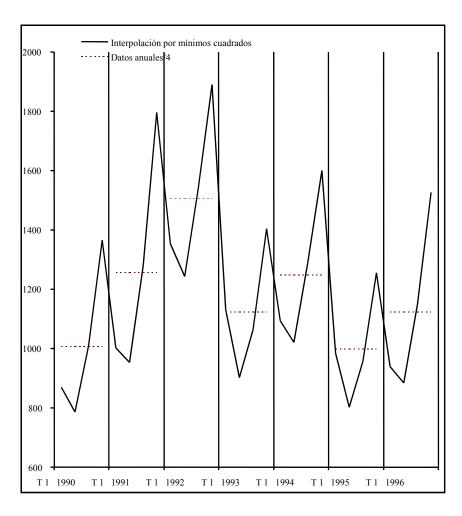

el último año del que se dispone de alguna observación anual y

una serie temporal con factores estacionales asumidos a priori.

Resctricción: suma de cuatro trimestres igual dato anual

	in una serie relac	trimestral de datos an ionada			
Fecha	Datos	Mínimos cuadrados	Lisman y Sandee		
	anuales				
1989	3930				
T1 1990		958	979,2	2	
T2 1990		975	967	7	
T3 1990		1018	1001,4	1	
T4 1990	4030	1078	1082,4	L	
T1 1991		1125	1163,8	3	
T2 1991		1204	1226,3	3	
T3 1991		1297	1288,8	3	
T4 1991	5030	1404	1351,3	3	
T1 1992		1524	1466,9		
T2 1992		1565	1581,2	2	
T3 1992		1528	1564,7	7	
T4 1992	6030	1413	1417,2	2	
T1 1993		1219	1225,8	3	
T2 1993		1104	1088,6	5	
T3 1993		1067	1056,4		
T4 1993	4500	1109	1129,2	2	
T1 1994		1229	1234,6	5	
T2 1994		1286	1296,6	5	
T3 1994		1278	1281		

BANGUAT/FMI/CEPAL/09-IX:



	in una serie re	ón trimestral de datos anu elacionada			
Fecha	Datos	Mínimos cuadrados	Lisman y Sandee		
	anuales				
T1 1995		1071	1062,3		
T2 1995		988	969		
T3 1995		959	953,4		
T4 1995	4000	982	1015,4		
T1 1996		1058	1088,6		
T2 1996		1115	1130,1		
T3 1996		1154	1145,8		
T4 1996	4500	1173	1135,5		
1997	4500				
igosto de i	2000 DN/			В	ANGUA

T/FMI/CEPAL/09-IX:

Ejemplo 7.2.	Distribución trimestral de datos anuales con superposición de un patrón estacional				
Fecha	Patrón estacional supuesto	Datos anuales	Distribución por mínimos cuadrados		
T 1 1990	0.9		870.4		
T 2 1990	0.8		785.1		
T 3 1990	1.0		1008.3		
T 4 1990	1.3	4030.0	1366.3		
T 1 1991	0.9		1002.9		
T 2 1991	0.8		952.6		
T3 1991	1.0		1278.8		
T 4 1991	1.3	5030.0	1795.8		
T 1 1992	0.9		1352.6		
T 2 1992	0.8		1243.4		
T 3 1992	1.0		1543.3		
T 4 1992	1.3	6030.0	1890.8		
T 1 1993	0.9		1130.8		
T 2 1993	0.8		902.1		
T 3 1993	1.0		1063.4		
T 4 1993	1.3	4500.0	1403.7		
T 1 1994	0.9		1094.4		
T 2 1994	0.8		1020.9		
T 3 1994	1.0		1285.2		
T 4 1994	1.3	5000.0	1599.6		
T 1 1995	0.9		983.6		
T 2 1995	0.8		803.0		
T 3 1995	1.0		957.8		
T 4 1995	1.3	4000.0	1255.6		
T 1 1996	0.9		939.6		
T 2 1996	0.8		883.6		
T 3 1996	1.0		1149.5		
T 4 1996	1.3	4500.0	1527.3		

BANGUAT/FMI/CEPAL/09-IX:

6 de agosto de 2009 PM

13

Proyecciones basadas en datos mensuales o trimestrales

Algunos métodos simples:

$$X_{T+t} = X_{T+t-s} \left[\frac{3}{6} \bullet \frac{X_T}{Y_{T-t}} + \frac{2}{6} \bullet \frac{X_{T-1}}{Y_{T-1}} + \frac{1}{6} \bullet \frac{X_{T-2}}{Y_{T-1}} \right]$$

 $X_{T+t} = X_{T+t-s} \left[\frac{3}{4} \bullet \frac{X_{T}}{Y_{T}} + \frac{2}{4} \bullet \frac{X_{T-1}}{Y_{T-1}} + \frac{1}{4} \bullet \frac{X_{T-2}}{Y_{T-2}} \right]$ Extrapolación utilizando el promedio ponderado de la tasa de variación de un período de doce meses de las tres últimas observaciones.

$$X_{T+t} = X_T \left[\frac{3}{6} \bullet \frac{X_T}{X} + \frac{2}{6} \bullet \frac{X_{T-1}}{X} + \frac{1}{6} \bullet \frac{X_{T-2}}{X} \right]$$

Extrapolación utilizando el promedió ponderado de la tasa de variación

período a período correspondiente a las tres últimas observaciones.

Proyecciones basadas en datos mensuales o trimestrales

Algunos métodos simples (continuación):

$$X_{T+1} = 1/2 X_T + 1/2 X_{T-1}$$

Igual al promedio de las dos últimas observaciones.

$$X_{T+t} = X_T$$

Igual a la última observación, sino existe una tendencia clara ni estacionalidad en las variaciones de la serie.

$$X_{T+t} = X_{T+t-s}$$

Igual al valor del mismo período del año anterior.

Proyecciones basadas en datos mensuales o trimestrales

Algunos métodos simples (continuación):

Modelación ARIMA de series temporales, modelos autorregresivos de media móvil

$$X_{T+1} = \frac{1}{4} \sum_{z=1}^{n} \Phi [(X_{T-z}) + \epsilon]/Z$$

Siendo:

z la periodicidad de la serie.

 X_T la última observación.

t el número de períodos que deben proyectarse.

Eficaces para pronosticar los patrones repetidos como la estacionalidad, pero no manejan correctamente los cambios en la tendencia. Requiere series largas y conocimiento estadístico avanzado.